استفاده از توابع مونتز لژاندر و ژاکوبی کسری برای حل عددی معادلات دیفرانسیل کسری

thesis
abstract

معادلات دیفرانسیل مرتبه ی کسری برای شرح و توصیف بهتر بسیاری از فرایندهای فیزیکی و مهندسی استفاده می شوند. یکی از اهداف این تحقیق، ساختن توابع ژاکوبی و لژاندر مرتبه ی کسری و به دست آوردن ماتریس عملیاتی مشتق کسری برای این توابع متعامد است. به همین منظور، ابتدا چند جمله ایهای ژاکوبی و لژاندر و ویژگی های آن ها را همراه با مشتق و انتگرال کسری و سری تیلور کلاسیک و سری تیلور کسری مورد مطالعه قرار می دهیم. همچنین در این پژوهش چند جمله ای های مونتز را معرفی خواهیم کرد و برخی از خواص آن ها را بیان می نماییم. از طرفی به طور خاص چند جمله ای های مونتز لژاندر را مورد مطالعه قرار خواهیم داد و چگونگی استفاده از آنها را برای حل معادلات دیفرانسیل کسری بیان می کنیم.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری

تاکنون روش تجزیه آدومیان به­طور گسترده­ای برای حل انواع معادلات دیفرانسیل به­کار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روش­های دیگر ازجمله روش­های هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جواب­های تحلیلی-تقریبی از انواع معادلات دیفرانسیل می­باشد، در این مقاله سعی شده با به­کارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...

full text

روش بدون شبکه برای حل عددی معادلات دیفرانسیل از مرتبه کسری

در این مقاله یک تکنیک کلی شناخته شده با عنوان روش بدون شبکه برای حل معادلات دیفرانسیل از مرتبه کسری درنظرگرفته شده است.جواب دقیق را با کمک روش مبتنی بر هم محلی توابع پایه شعاعی مورد تقریب قرار‏ ‎‏می‎دهیم.این تکنیک نقش مهمی که ایفا می کند معادله دیفرانسیل کسری را به یک دستگاه معادلات تقلیل می دهد.نتایج عددی بیانگر دقت وتوانایی این روش است.

full text

حل عددی معادلات دیفرانسیل معمولی کسری با روش گالرکین ناپیوسته موضعی

در این مقاله، روش گالرکین ناپیوسته‌ی موضعی برای حل معادلات دیفرانسیل معمولی با مرتبه‌ی کسری را در حالت کلی به کار می‌بریم.  در این روش انتخاب (طبیعی) شار عددی آپویند، ما را قادر می‌سازد تا مسائل مقدار اولیه برای معادلات کسری معمولی را به صورت بازه به بازه و پیشرو در زمان حل کنیم. این بدین معنی است که ما بایستی در هر زیربازه به حل یک دستگاه معادلات از مرتبه پایین $(k+1)times (k+1)$...

full text

استفاده از روش هم محلی و چندجمله ایهای مانس-لژاندر برای حل عددی معادلات دیفرانسیل کسری

در این پایان نامه روشی عددی برای یافتن جواب تقریبی معادلات دیفرانسیل کسری بر اساس روش هم محلی و چندجمله ای های مانس ارائه می شود. نمایش مناسب از جواب توسط چندجمله ای های مانس رفتار عددی آن را به جوابی از سیستم معادلات جبری کاهش می دهد. مزیت اصلی روش مذکور دقت بالای آن و همگرایی سریع می باشد، در نتیجه با بکارگیری تعداد کمی از نقاط هم محلی نتایج خوبی بدست می آید. همچنین با عنایت به اینکه مشتق کسر...

15 صفحه اول

روشهای عددی برای حل معادلات دیفرانسیل کسری

این پایان نامه در پنج فصل تدوین شده است. در فصل اول به بیان مفاهیم اساسی در مورد مشتقات و انتگرالهای کسری معادلات دیفرانسیل کسری و اثبات قضایایی در مورد آنها پرداخته شده است. در فصل دوم روش تجزیه آدمین و همچنین روش تجزیه آدمین اصلاح شده برای حل معادلات دیفرانسیل کسری مورد بررسی قرار گرفته است. در فصل سوم روش تکرار تغییر برای حل این معادلات مورد بررسی قرار میگیرد. در فصل چهارم این سه روش بر روی ...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه کاشان - دانشکده ریاضی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023